
Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-1

©1999 McBreen.Consulting

Practical Objects

Test Driven Software
Development using JUnit

Pete McBreen, McBreen.Consulting
petemcbreen@acm.org

©McBreen.Consulting Page 2Practical Objects: Test Driven Software Development using JUnit

Test Driven Software Development???

The Unified Process is Use Case Driven
Requirements drive the development process, progress is

measured by how many Use Cases are done

eXtreme Programming is Test Driven
Testable Requirements drive the process, progress is

measured by how many Functional Tests pass

JUnit is a freeware Java Testing Framework that
allows developers to test their own code
Writing the tests first before writing the code ensures

that the unit tests are a real test of the implementation

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-2

©McBreen.Consulting Page 3Practical Objects: Test Driven Software Development using JUnit

eXtreme Programming states that Pictures are
nice, but tested code is better

eXtreme Programming is a new methodology
It is a very high discipline process, but with the absolute

minimum of mandated activities or deliverables

"Listening, Testing, Coding, Designing. That's all
there is to software. Anyone who tells you
different is selling something." Kent Beck

Extreme Programming is a minimal methodology
that works with developer instincts
Delivery is a shared responsibility between developers and

the user community
Design occurs by getting all developers to contribute to the

product, rather than a design team and coding team

©McBreen.Consulting Page 4Practical Objects: Test Driven Software Development using JUnit

Adoption of eXtreme Programming is just
starting, but we can apply the lessons now

eXtreme Programming is a developer scale,
lightweight methodology based on four values
Ultra high frequency Communication

Simplicity of both design and process
Feedback driven Activities
Courage - embrace change as a way of life, rather than

build processes to limit change

When we come to realize that change is the only
reality, life is much easier - Anon

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-3

©McBreen.Consulting Page 5Practical Objects: Test Driven Software Development using JUnit

Applying the lessons of Extreme
Programming

Steering projects

Applying the Quality First
strategy

Using feedback to improve
system quality

Big design up front does
not work

Separating Business and
Technical responsibilities

Incremental development
means incremental
requirements capture

Make it run, make it right,
make it fast

Unit Testing and really
meaning it

Avoiding Integration Hell

Refactoring to improve
design quality

Experimentation requires a
high discipline process

Use a process coach to tune
and tailor your process

©McBreen.Consulting Page 6Practical Objects: Test Driven Software Development using JUnit

Quality First says do not add any features
until you know all existing code works

Most projects "add quality"
as time progresses
Testing "inspects quality"

into the software

Integration hell is normal

It's feature complete, time
to get the bugs out ☺

XP gets quality to 100% as
early as possible
The system always runs with

zero bugs

Developers incrementally
capture requirements
and add features

Quality

Time

Quality

Time

Traditional Projects ship at the end

XP Projects can ship anytime

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-4

©McBreen.Consulting Page 7Practical Objects: Test Driven Software Development using JUnit

Quality First is a nice idea, but how do we
manage to achieve it - by getting feedback

Feedback is essential for learning, we need to
know the outcome to change our actions
The greater the delay between action and visible outcome,

the smaller are the chances of effective learning

In software development, the best feedback
occurs when we run a system
So it is useful to progress from Requirements, through

Design and into Implementation quickly
In order to get the necessary speed, do incremental

development, developing just a small part each time

Just doing the activities faster is not a good idea
Forcing the pace just increases errors

©McBreen.Consulting Page 8Practical Objects: Test Driven Software Development using JUnit

Make it run, make it right, make it fast

Developers should make the design executable
first by writing the code
Running the test cases will then identify any problems

with the implementation or requirements

Then developers make the design as simple as
possible and correct
Rewrite for clarity, to reflect what has been learned so far

and to meet project standards

Only make it fast if performance measurements
indicate that it will be too slow for use
 Measure and profile to find where the system is spending

time, and if possible apply a hardware fix

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-5

©McBreen.Consulting Page 9Practical Objects: Test Driven Software Development using JUnit

Test everything that could possibly break

Relentless Testing means that the Quality of the
complete system is always known
The benefit of no integration surprises is only available if

you have a complete set of tests that you always run no
matter how small or insignificant the change

Tests fall into one of two categories
Unit Tests are written by the Developers, so that they

know that every method works as intended
Functional tests are owned by the Business, so that they

know that every requirement has been satisfied

©McBreen.Consulting Page 10Practical Objects: Test Driven Software Development using JUnit

Unit Tests are owned by developers

For all classes

Test a single class and all it's collaborators

Everything that could possibly break

Run all unit tests before any release (or checkin)

Must always score 100% ! ! !

Unit testing requires no manual intervention

Don’t let the sun set on bad code
Work in short episodes, checking in tested code frequently

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-6

©McBreen.Consulting Page 11Practical Objects: Test Driven Software Development using JUnit

Functional Tests are owned by customer

Test every scenario from every Use Case

End to end
Input through output
Check your export files, database contents, printouts

Specify exactly what a requirement means

Score increases show progress

Catch regressions

©McBreen.Consulting Page 12Practical Objects: Test Driven Software Development using JUnit

Continuous Integration is a way of avoiding
Integration Hell

The longer you wait to integrate, the longer it
takes, and the more painful it is
THEREFORE: don’t wait at all!

Microsoft integrates daily to weekly

eXtreme Programming projects integrate
multiple times PER DAY
Take small steps and always ensure that the complete

system still passes all of the tests
Deleting tests to make your code pass the tests will soon

be made a capital offense

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-7

©McBreen.Consulting Page 13Practical Objects: Test Driven Software Development using JUnit

To facilitate testing of Classes, a Test Harness
is needed for each class that is developed

The Unit Test Harness must be capable of fully
exercising all of the behaviors of the Class
It should create objects, invoke all methods, destroy the

objects and validate the performance
The Unit Test Harness should also test all invariants and

all method pre-conditions and post-conditions

All Tests should be run as a Smoke Test following
all changes and prior to source code check-in
This prevents most errors from entering the master source

A Test Harness should require no manual
intervention to minimize developer effort
Tests that require manual intervention are rarely used

©McBreen.Consulting Page 14Practical Objects: Test Driven Software Development using JUnit

To introduce the idea of a Test Harness, a very
simple Counter Class will serve as an example

A partial listing for the Counter Class
class Counter {
 public int currValue;
 public int maxValue;

 public void increment() {
 if (currValue < maxValue)
 currValue = currValue + 1;
 }
 public void decrement() {
 currValue = currValue - 1;
 }
 public void setValue(int newValue) {
 if (newValue < maxValue)
 currValue = newValue;
 }
}

Counter
currValue
maxValue

increment()
decrement()
setValue()

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-8

©McBreen.Consulting Page 15Practical Objects: Test Driven Software Development using JUnit

A Test Harness that simply prints the output
requires a manual check of the results
class TestCounter {
 public static void main(String argv[]) {
 Counter myCounter = new Counter(10);
 myCounter.setValue(9);
 System.out.println("Counter "+ myCounter);
 myCounter.increment();
 System.out.println("Counter "+ myCounter);
 System.exit(0);
 }
}

To avoid manual checking, tests should only
produce output in case of error

 myCounter.setValue(9);
 if (myCounter.currValue != 9)
 System.out.println("Error "+ myCounter);

©McBreen.Consulting Page 16Practical Objects: Test Driven Software Development using JUnit

Functional Test Frameworks are necessary for
testing the interactions between objects

Functional Test Frameworks should be built to
support testing of the complete system
Facades simplify this since a Command Line or Batch

presentation can be created to drive the application

Use Cases are the source for Functional Tests
Just because a Class is internally correct, it does not mean

that there will be no interaction errors between objects

Using test scripts to exercise the application is
essential for regression testing
Tests can run unattended after every change to the system
The presentation logic will still need to be tested, but this

will occur after the total application logic has been tested

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-9

©McBreen.Consulting Page 17Practical Objects: Test Driven Software Development using JUnit

The JUnit Testing Framework for Java is an
example of a Test Harness

It provides TestCase and TestSuite classes for
managing the execution of Tests
public class MoneyTest extends TestCase
A TestCase supports the suite() method that returns a

set of Tests that can be executed
A Test Failure is an anticipated problem that was tested for
A Test Error was an unexpected problem that threw an

exception in the code being tested

JUnit supports both GUI and TextUI execution of
the same test cases
A live example of providing alternate presentations for the

same underlying application logic

©McBreen.Consulting Page 18Practical Objects: Test Driven Software Development using JUnit

The Graphical User Interface provides simple
feedback on the overall Progress

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-10

©McBreen.Consulting Page 19Practical Objects: Test Driven Software Development using JUnit

Errors and Failures are highlighted by the
coloring in the progress bar

©McBreen.Consulting Page 20Practical Objects: Test Driven Software Development using JUnit

The details of each Error and Failure are
captured by the thrown assertion

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-11

©McBreen.Consulting Page 21Practical Objects: Test Driven Software Development using JUnit

Created by Erich Gamma and Kent Beck,
JUnit is freely available for download and use

Documentation and source code is available at
http://members.pingnet.ch/gamma/junit.htm
Instructions for use are provided on this webpage titled

Test Infected: Programmers Love Writing Tests

JUnit was ported to C++ by Michael Feathers,
CppUnit is at http://www.armaties.com
There are some minor operational differences due to the

differences in language capabilities

Both implementations provide
A README file for installation
A cookbook for how to define new test cases

©McBreen.Consulting Page 22Practical Objects: Test Driven Software Development using JUnit

Using JUnit, an instance of a subclass of
TestCase is created for each Unit Test
import test.framework.*;
public class CounterTest extends TestCase {
 protected Counter myCounter;
 public CounterTest(String name) {
 super(name);
 }
 protected void setUp() {
 myCounter = new Counter(10);
 }
 public void testSetValue() {
 myCounter.setValue(9);
 assertEquals(9 , myCounter.currValue);
 }
 public static Test suite() {
 TestSuite suite= new TestSuite();
 suite.addTest(new CounterTest(" testSetValue"));
 return suite;
 }
}

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-12

©McBreen.Consulting Page 23Practical Objects: Test Driven Software Development using JUnit

The JUnit TestCase class allows a set of tests
to be run independently

The setUp() method is invoked prior to running
the method named in the TestCase constructor
suite.addTest(new CounterTest(" testSetValues"));
If this method is not present, a NoSuchMethodException

will be reported as an Error by the Test Harness
Run: 1 Failures: 0 Errors: 1

The tearDown() method is invoked after running
the method to clean up if necessary

TestCase can also support a main method
 public static void main (String[] args) {
 test.textui.TestRunner.run (suite());
 }

©McBreen.Consulting Page 24Practical Objects: Test Driven Software Development using JUnit

Designing unit tests

When to write a Unit Test is a simple decision
Whenever you are tempted to type something into a print

statement or a debugger expression, write it as a test
instead. -- Martin Fowler

So if a Method could be affected by a coding error, write
tests that validate that the Implementation is correct

Functional Tests are written for every Use Case as well,
but defining these is the responsibility of the Users

The Unit Tests are complete when the tests can
detect any change in the software
If it is possible to change the software without the tests

catching the problem then the test suite is incomplete

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-13

©McBreen.Consulting Page 25Practical Objects: Test Driven Software Development using JUnit

Designing functional tests from use cases
uses the failure conditions from the scenarios

For each Failure Condition in a Use Case, Test
Plans need test cases to cause that failure
And the usual boundary testing applies with values just

above and below the threshold to detect problems
4a. Customer has exceeded credit limit
n Test 1 - Outstanding balance = credit limit
n Test 2 - Outstanding balance + order value = credit limit

Dependencies between the various tests can be
identified from the different scenarios
Conditions that are only recognized in recoverable

scenarios should not affect normal operation
n e.g. Preferred customer status only affects operation if

Customer has exceeded credit limit

©McBreen.Consulting Page 26Practical Objects: Test Driven Software Development using JUnit

JUnit Demonstration

Copyright 1999 McBreen.Consulting 08-Oct-99

Practical Objects: Test Driven Software Development using JUnit Page-14

©McBreen.Consulting Page 27Practical Objects: Test Driven Software Development using JUnit

Closing Thoughts and Question Time

Software development is possible without a good
testing harness, but it is a stressful practice

Using a good testing framework allows for less
stress and much more confidence in the code

It is much faster to Write the unit tests first,
then implement the methods

If your implementation environment does not
have a port of JUnit, write your own

Remember that software development is meant
to be fun, if it isn't, the process is wrong☺

©McBreen.Consulting Page 28Practical Objects: Test Driven Software Development using JUnit

Links and references

The eXtreme Programming Website
http://www.xprogramming.com/

Manifesto for software development
http://members.aol.com/acockburn/manifesto.html

Software Development as a Cooperative Game
http://members.aol.com/humansandt/papers/asgame/asgame.htm

Test Infected: Programmers Love Writing Tests
http://members.pingnet.ch/gamma/junit.htm

Test Driven Software Development Using JUnit
http://www.cadvision.com/roshi/talks/TestDriven.html

